
User's Guide

The information in this document is subject to change without notice and
describes only the product defined in the introduction of this documentation. This
document is intended for the use of object XP AG customers only for the purposes
of the agreement under which the document is submitted, and no part of it may be
reproduced or transmitted in any form or means without the prior written
permission of object XP AG. The document has been prepared to be used by
professional and properly trained personnel, and the customer assumes full
responsibility when using it. object XP welcomes customer comments as part of
the process of continuous development and improvement of the documentation.

The information or statements given in this document concerning the suitability,
capacity, or performance of the mentioned hardware or software products cannot
be considered binding but shall be defined in the agreement made between object
XP and the customer. However, object XP has made all reasonable efforts to
ensure that the instructions contained in the document are adequate and free of
material errors and omissions. Object XP, if necessary, explain issues which may
not be covered by the document.

object XP's liability for any errors in the document is limited to the documentary
correction of errors. object XP WILL NOT BE RESPONSIBLE IN ANY EVENT FOR
ERRORS IN THIS DOCUMENT OR FOR ANY DAMAGES, INCIDENTAL OR
CONSEQUENTIAL (INCLUDING MONETARY LOSSES), that might arise from the
use of this document or the information in it. This document and the product it
describes are considered protected by copyright according to the applicable laws.

Copyright © 2000-2006, object XP AG. All rights reserved.

jSMS User's Guide 2/42

Table of Contents

1. About this Document..4
1.1. Scope..4
1.2. Audience...4

2. The jSMS Model..5
2.1. The jSMS Software Layers...5
2.2. jSMS API versus Java Mail API..6

3. Getting started...7
3.1. License jSMS...7
3.2. Install jSMS...7
3.3. Testing the Connection to your GSM device..8

4. jSMS Services...9
4.1. Supported Message Types..9
4.2. The SmsService Interface..10
4.3. Windowing for Applications...10
4.4. SmsService Implementations..10

4.4.1. GsmSmsService..10
4.4.2. TapSmsService..10
4.4.3. UcpSmsService..11
4.4.4. Cimd2SmsService...11
4.4.5. SmppSmsService..11

4.5. Creating a SMS Service Object..12
4.6. Initializing the Service Object...12

4.6.1. Example for Instantiating a GsmSmsService Object...13
5. Multimedia Message Service (MMS)..14

5.1. MMSService...14
5.2. MMSServiceFactory...14
5.3. MMSListener...15
5.4. Configuring the MM1Service...16

5.4.1. Hardware...16
5.4.2. Common configuration..17
5.4.3. Windows installation and configuration...18
5.4.4. BSD-PPP daemon configuration...19

5.5. Configuring the MM7 protocol...21
5.5.1. Information required from your MMSC provider..21
5.5.2. Information provided to your MMSC provider...21
5.5.3. Operation Modes...22
5.5.4. MM7 Configuration Properties...23
5.5.5. SSL/TLS..24

6. Messages...25
6.1. Message and SmsMessage..25

6.1.1. Sending a SMS Message..25
6.1.2. Receiving a SMS Message...26

6.2. MultipartMessage..27
6.2.1. SmartMessage...27
6.2.2. EMSMessage..27
6.2.3. Sending a multipart message..27
6.2.4. Receiving a multipart message...28

6.3. OTA Messages...29
6.3.1. BrowserSetting..29
6.3.2. Bookmark..29
6.3.3. Service Indication / Service Loading..29
6.3.4. Sending an OTA Message..30
6.3.5. Receiving OTA Messages...30

6.4. Multimedia Messages..31
6.4.1. MMSNotification...31
6.4.2. MMSMessage...31
6.4.3. SMILMessage...31
6.4.4. Sending a SMIL Message...31
6.4.5. Receiving a multimedia message over MM1...32
6.4.6. Receiving a multimedia message over MM7...33

7. Sample jSMS Applications...34
7.1. Send SMS messages using a GSM Device...34
7.2. Receive SMS messages using a GSM device via IrDA..35
7.3. Send SMS messages through a Terminal Server...36
7.4. Send Short Messages (SMS) using UCP...37
7.5. Send Internet mail messages using the SmtpService...38

7.5.1. The SmtpService Class..38
8. Debugging your Application..39
9. Frequently Asked Questions (FAQ)..40

jSMS User's Guide 3/42

1. About this Document

This document introduces the jSMS API and explains how to use it. Some of the
topics covered are:
 The architectural model of jSMS.
 The installation of the jSMS binary version.
 Sample applications that use the jSMS library.
 Future directions.
 Copyright information.

1.1. Scope

The main chapters in this document are:

 The jSMS Model
Gives a short overview of the architecture of jSMS

 Installation
Describes the steps necessary to install and configure the product

 jSMS Services
Gives a short description about the SMS Service classes contained in the jSMS
API

 Sample Applications
Shows some of the possible applications of the API. Explains how to use the
API for sending and receiving Short Messages and Multimedia Messages.

 Debugging your Application
Describes how to enable jSMS logging

 FAQ
Compilation of frequently Asked Questions concerning installation and use of
this product

1.2. Audience

This document is intended for Java Programmers starting to develop applications
using the jSMS API.

jSMS User's Guide 4/42

2. The jSMS Model

2.1. The jSMS Software Layers

Figure 1: The jSMS Layers

Figure 1 illustrates the jSMS layers. The lowest levels are the hardware and the
operating system. The next level is a Java virtual machine allowing to run portable
Java applications. jSMS requires in most cases serial communication to a SMS
device (except if a TCP/IP based solution is applied. The Java communication API
(also known as javax.comm) defines the interfaces to be used for serial
communication. jSMS uses this standard and can be used with any javax.comm
compliant implementations. The following list shows some links to
implementations of javax.comm that can be used with jSMS:

 Sun's reference implementation at
http :// java.sun.com /products/ javacomm / index.html

 Serial I/O driver at http:// www.serialio.com /
 RX-TX at http:// www.rxtx.org /
 Any other driver that is compliant with javax.comm.

The jSMS layer sits above the JVM and javax.comm and is therefore fully portable
to all Java compliant platforms. jSMS does not use any native calls except those
through the javax.comm driver. The top layer is your jSMS-enabled application.

jSMS User's Guide 5/42

http://java.sun.com/products/javacomm/index.html
http://www.rxtx.org/
http://www.rxtx.org/
http://www.rxtx.org/
http://www.serialio.com/
http://www.serialio.com/
http://www.serialio.com/
http://java.sun.com/products/javacomm/index.html
http://java.sun.com/products/javacomm/index.html
http://java.sun.com/products/javacomm/index.html
http://java.sun.com/products/javacomm/index.html
http://java.sun.com/products/javacomm/index.html
http://java.sun.com/products/javacomm/index.html

2.2. jSMS API versus Java Mail API

Sun created the Java Mail API that is used for sending and receiving mail
messages. Sun's API is very flexible in terms of the underlying mail mechanism.
However, the universal and abstract design made the Java Mail API quite complex
to use and is mostly used for e-mail communications. The required Java classes (or
.jar files) for a Java Mail API are quite heavy in terms of required disk space. As a
result, if messaging features such as e-mail or SMS are needed in small
applications or even embedded devices, most applications implement their own
mechanism for sending/receiving e-mails.

jSMS provides a small footprint SMS and mail API that can easily be applied on
embedded devices. One may ask when should which API be used. As a general
term, if a complex e-mail application should be developed, one better sticks with
the Java Mail API defined by Sun. For applications that don't have to send/receive
complex messages (e.g. MIME) or especially for SMS applications, the use of jSMS
is recommended.

jSMS User's Guide 6/42

3. Getting started

First of all, download a copy of the jSMS-API from http:// www.objectxp.com / . The
API ships as as either a gzipped tar-archive (Unix users) or as ZIP-file (Windows
users).

3.1. License jSMS

After jSMS is downloaded or purchased, an email message is sent to the licensee
containing license properties. These properties are required to run jSMS
applications (for the demo version as well as the full version of jSMS). The
following table shows the license properties your should receive after jSMS has
been downloaded or purchased.

Property Comment

proto.license.user The user name of the licensee.

proto.license.company The company name of the licensee.

proto.license.version Until which version this key will be valid.

proto.license.serial Serial number of the license.

proto.license.type Trial / Development / Runtime license

proto.license.sig The key itself

3.2. Install jSMS

The following steps are necessary to install jSMS.

Windows-Version

1. Unzip the downloaded file to your target directory (using a tool like WinZIP)
2. Change directory to your target directory
3. Make the necessary changes in the jsms.conf file:

1. Copy the license properties that you received via email into the jsms.conf file
2. Change the property connector.serial.port to contain the port that you have the

GSM device connected to (e.g. COM1).
4. Install javax.comm for Windows
(http://java.sun.com/products/javacomm/index.html)

Unix-Version

1. Untar the downloaded file to your target directory
2. Change directory to your target directory
3. Make the necessary changes in the jsms.conf file:

1. Paste the license properties that you received via email into the jsms.conf file
2. Change the property connector.serial.port to contain the port that you have the

GSM device connected to (e.g. /dev/ttyS0).
4. Download and install a javax.comm implementation for Unix

jSMS User's Guide 7/42

http://java.sun.com/products/javacomm/index.html
http://www.objectxp.com/products/downloads.jsp
http://www.objectxp.com/products/downloads.jsp
http://www.objectxp.com/products/downloads.jsp

3.3. Testing the Connection to your GSM device

Next, make sure that your Modem/ISDN-Adapter or GSM device is working
properly: For devices connected to a serial port , start a terminal emulation (e.g.
minicom (Unix) or Hyperterm (Windows)) and connect to the device (use the same
port and baud rate you specified in the jSMS configuration file). For GSM devices
connected to a terminal server, connect to the device using telnet (telnet <IP-
address> <port>). When connected to the device, type in AT followed by the [Return]
key. If the device does not respond with OK , check your cabling and/or
port/hardware settings and try again.

Finally you can test your jSMS installation by running the sms.sh (Unix) or
sms.bat (Windows) script located in the <install-dir>/bin directory. Starting this script
with the argument "-h" displays usage information:

$./sms.sh -h
Usage: SMSService [-p protocol] [-c cfg] [-vVhasr] [-n number] [-m msg]
 Options:
 -p protocol to use (gsm [default], tap, ucp, cimd2, smpp)
 -c use specified config file
 -v verbose messages
 -V display version information
 -h display this help message
 -a wait for incoming messages (start receiving)
 -n recipient
 -o originator (sender)
 -m message to send
 -r read messages stored on device (GSM only)
 -s request status report
 -e encoding: gsm (default), binary (8bit), ucs2 (Unicode)

Now send an SMS to a mobile phone:

$./sms.sh -v -n "+41123456789" -m "Hello Mobile World"
Reading configuration...
Using SmsService implementation 'com.objectxp.msg.GsmSmsService'
Initializing SMS Device...
Sending message to '+41123456789'...
Shutting down...
$

jSMS User's Guide 8/42

4. jSMS Services

jSMS supports various transport facilities for sending (and receiving) Short
Messages (SMS) and Multimedia Messages (MMS). Currently, the following
protocols are implemented:

 GSM 03.38, 03.40 & 07.05 (GSM Devices with a built-in Modem)
 UCP (Universal Computer Protocol)
 CIMD2 (Computer Interface to Message Distribution)
 SMPP (Short Message Peer-to-Peer Protocol)
 TAP/IXO (Paging Protocol)
 MM1 (Multimedia Messaging using WAP/WAP PUSH and GPRS)
 MM7 (Multimedia Messaging for Value Added Service Providers)

Additionally, jSMS also contains a small footprint SMTP client for sending e-mails.

4.1. Supported Message Types

jSMS supports the following message types:

 7-Bit Text: The message will be encoded as packed 7-bit data. jSMS
automatically converts Messages from ISO-8859-1 to the 7-Bit GSM-Alphabet.
The maximum length of a 7-bit message is 160 characters.

 UCS2: Unicode message, uses 2 bytes per character. The maximum length of
the message is 70 characters.

 Binary Messages: A total of 140 bytes of binary data can be sent / received in
a short message.

 Nokia SmartMessages: jSMS includes classes for sending and receiving
Business Cards, Agenda Entries, Ring tones, Picture Messages and Operator
Logos according to Nokia's SmartMessaging 3.0 specification.

 EMS Messages: The API supports sending and receiving Extended Messaging
System (EMS) message containing pictures, animations, sound and formated
text elements. An EMS Message can also be used for sending and receiving
content longer than 160 characters (text) or 140 bytes (data).

 OTA Messages: jSMS supports the Over The Air-technology (OTA) for sending
Bookmarks, Browser settings and Service Indications.

 MMS Notification: The MMS Notification advises the jSMS user about a
MMS Message which is ready to be picked up at the MMS-Center. The MMS
Notification is delivered using WAP-Push (WAP over SMS)

 MMS Messages: Support for SMIL- and multipart/mixed messages.

jSMS User's Guide 9/42

4.2. The SmsService Interface

The SmsService interface defines the methods available for sending and receiving
Messages.

4.3. Windowing for Applications

Windowing for applications enables jSMS to initiate more than one operation
before receiving a response from the SMSC. This increases the message
throughput. SmsService implementations that support Windowing implement the
WindowingService interface. For Windowing to work, your SMSC operator must
enable windowing for your account.

4.4. SmsService Implementations

jSMS currently provides the following SmsService implementations:

 GsmSmsService (for GSM devices supporting GSM 03.38, 03.40 & 07.05)
 TapSmsService (Implementation of the TAP/IXO protocol)
 UcpSmsService (Universal Computer Protocol)
 Cimd2SmsService (CIMD2 - Computer Interface to Message Distribution)
 SmppSmsService (SMPP - Short Message Peer-to-Peer Protocol)

4.4.1. GsmSmsService

This class may be used to send and receive GSM Short Messages (SMS) using a
GSM mobile device (e.g. a Mobile Phone). The device may be attached to the serial
port or to a TCP/IP capable terminal server.

4.4.2. TapSmsService

This class may be used to send Short Messages (SMS) / Pager messages to a
mobile recipient using TAP/IXO.

The message will be sent through a TAP Gateway (SMSC). The Gateway may be
reached by either a modem or ISDN connection.

TAP/IXO only supports 7-Bit encoded messages. All characters in a message above
ASCII(127) will therefore be truncated to a dot (.). Notice: Receiving Messages
through TAP is not supported.

jSMS User's Guide 10/42

4.4.3. UcpSmsService

This class may be used to send (and receive) Short Messages (SMS) to a mobile
recipient using UCP (Universal Computer Protocol).

The message will be sent through a SMS Center (SMSC) reachable by either a
modem/ISDN connection or TCP/IP.

Receiving Short messages via UCP is only supported for TCP/IP connections. UCP
over TCP/IP usually requires a "large volume account" at the SMSC of your Mobile
Network Provider. Contact your local provider for further information.

Certain UCP specific message properties (like deferred delivery) are provided by
the class UcpMessage. Use this class instead of SmsMessage to access those UCP
specific features.

4.4.4. Cimd2SmsService

This class may be used to send (and receive) Short Messages (SMS) to a mobile
recipient using Nokia's CIMD2 protocol (Computer Interface to Message
Distribution).

The message will be sent through a SMS Center (SMSC) reachable by TCP/IP.

Like UCP, CIMD2 requires a "large volume account" at the SMSC of your Mobile
Network Provider. Contact your local provider for further information.

Certain CIMD2 specific message properties (like tariff class) are provided by the
class Cimd2Message. Use this class instead of SmsMessage to access those CIMD2
specific features.

4.4.5. SmppSmsService

This class may be used to send (and receive) Short Messages (SMS) to a mobile
recipient using the SMPP protocol.

The message will be sent through a SMPP SMS Center (SMSC) reachable by
TCP/IP.

Like UCP and CIMD2, SMPP usually requires a "large volume account" at the
SMSC of your Mobile Network Provider. Contact your local provider for further
information.

jSMS User's Guide 11/42

4.5. Creating a SMS Service Object

Before SMS messages can be sent or received, an SmsService object must be
created and initialized. The following steps are required to construct a SMS
service object:

1. Create a java.util.Properties or a java.io.File object that holds configuration data
2. Instantiate the appropriate Service Implementation (e.g. GsmSmsService)
3. Call the init method providing the Properties or File object as argument.

4.6. Initializing the Service Object

After you have created a SmsService object suiting your transport facility (GSM,
UCP, CIMD2, SMPP, TAP/IXO), the service has to be initialized with the
appropriate configuration properties. This can be achieved by passing a
java.util.Properties object containing the configuration to the service using the
init(java.util.Properties) method. You may also store your jSMS properties in a file and
let the SmsService implementation read it upon initialization. Use the init(java.io.File)
method for this purpose. When calling the init method without any arguments,
jSMS tries to locate and load the properties by searching for a file called jsms.conf
in your PATH and CLASSPATH . Consult the API-Documentation for further
information.

For any of the SmsService classes, the initialization properties must contain at
least one valid jSMS license key. A license key consists at least of the properties
user, company, serial, version, type and signature (sig). You should have received a
jSMS license key after registering for a trial version or purchasing the full version
of jSMS.

Each SmsService Implementation (e.g. Cimd2SmsService) supports it's own set of
configuration properties. A detailed description of the properties supported by
each SmsService can be found in the Java API documentation that comes with the
jSMS distribution.

jSMS User's Guide 12/42

4.6.1. Example for Instantiating a GsmSmsService Object

A valid properties object can be created either from a file or by setting the
attributes manually. Thus, an example reading from a file would look like this:

java.io.File config = new java.io.File(”/path/to/your/jsms.conf”);
SmsService service = new GsmSmsService();
service.init(config);

The configuration file jsms.conf should look similar to the following example:

gsm.license.company=your_company
gsm.license.user=your_name
gsm.license.serial=your_serial
gsm.license.version=2.x
gsm.license.type=TRIAL LICENCE
gsm.license.sig=your_key

sms.gsm.connector=SERIAL
connector.serial.port=COM1
connector.serial.bps=19200

The configuration properties may also be embedded inside the application. An
example would look like this:

java.util.Properties props = new java.util.Properties();

props.put("sms.gsm.connector", "SERIAL");
props.put("connector.serial.port", "COM1");
props.put("connector.serial.bps", "19200");

props.put("gsm.license.company", "your_company");
props.put("gsm.license.user", "your_name");
props.put("gsm.license.serial", "your_serial");
props.put("gsm.license.version", "2.x");
props.put("gsm.license.type", "TRIAL LICENSE");
props.put("gsm.license.sig", "your_key");

SmsService service = new GsmSmsService();
service.init(props);

jSMS User's Guide 13/42

5. Multimedia Message Service (MMS)

jSMS 2.x supports sending and receiving of Multimedia Messages (MMS).
Currently, jSMS provides a implementation for the following protocol(s):

 MM1 (WSP/WTP using WAP-PUSH and a PPP connection)
 MM7 (Multimedia Messaging for Value Added Service Providers (VASP))

5.1. MMSService

The MMSService interface defines the methods to send and receive a Multimedia
Message (MMS) to/from a MMS-Proxy/Relay.

Even if SMS and MMS look very similar for the user, they base on different
technologies.

With MM1, the content of a MMS is not transported using the GSM SMS
technology but over a PPP (Point-to-Point) connection. To send a MMS, a PPP
connection is established and the MMS is submitted to the MMS-Proxy/Relay
using a WAP POST request (UDP). For receiving a MMS, the MMS-Proxy/Relay
sends a notification to the client using WAP-PUSH (WAP over SMS). This
Notification contains the location where the MMS may be retrieved. The actual
fetch of the incoming MMS is done with a WAP GET request (UDP, using a PPP
connection over GPRS).

MM7 uses SOAP (Simple Object Access Protocol) for exchanging multimedia
messages between a Value Added Service Provider (VASP) and the MM7
Proxy/Relay. SOAP messages are transferred over HTTP(S).

To construct a MMSService object, the MMSServiceFactory (see below) must be used.

5.2. MMSServiceFactory

Use this class to create MMSService objects. The factory depends on user-provided
configuration properties for its operation. The factory offers two methods for
acquiring an MMSService implementation: getService(String name) for acquiring a
MMSService object by name and getDefaultService()which returns the default
service. Please note that the factory creates single instances for each service,
therefore calling getService multiple times for the same service name always
returns the same object.

jSMS User's Guide 14/42

The three main properties that are required to create a MMSService are the Service
name, the name of the Protocol and the name of the class implementing the
Transport interface. Each Protocol and Transport-Implementation expects its own
additional properties. Here are the properties used by the factory to create a
MMSService:

Property Description

[mms.default.service] The name of the default service. If this property is set, the
MMSServiceFactory will use the prefix "mms.[name]." when
looking for the service configuration. If no default service is
specified, the factory will use the prefix "mms."

[mms.protocol.name] MMS Protocol to use:
● MM1
● MM7

[mms.transport.class] MMS Transport implementation to use (See the API docs of
package com.objectxp.mms.transport for a list of supported
transports)

5.3. MMSListener

The MMSListener interface is used by jSMS to pass incoming Messages,
Notifications and Read/Delivery-Reports to your application. The interface declares
four methods to process incoming messages and reports:

● handleIncomingMessage
● handleReadReport
● handleDeliveryReport
● handleNotification

In order to receive incoming messages and reports, your application must
implement this interface and register the implementation with the MMSService by
invoking the setListener method on the MMSService.

When a message or report has been successfully processed by your application,
you should return MMSResponseStatus.SUCCESS . In case of a failure or if you want
to reject an incoming message/report, return one of the predefined
MMSResponseStatus objects or create a customized status. If your implementation
throws a RuntimeException or returns a null value, this is treated like returning a
MMSResponseStatus.SERVICE_ERROR .

Since the jSMS MM1 implementation (MM1Service) relies on a SmsService for
receiving MM1 notifications and reports, a connection between the SmsService and
the MM1Service can be established. For this purpose, the MM1Service implements
the MessageEventListener interface and therefore can be registered as a listener for
events emitted by the SmsService. In case of an incoming MM1 notification or
report, MM1Service intercepts the message event and forwards it to the registered
MMSListener by invoking the corresponding handler method.

jSMS User's Guide 15/42

5.4. Configuring the MM1Service

The MM1Service uses a WSP/WTP connection to communicate with the MMS-Proxy/
Relay. WSP (Wireless Session Protocol) is comparable to the HTTP Protocol but
adjusted for wireless connections. WTP (Wireless Transport Protocol) is the
equivalent of the IP Protocol. The underlying transport layer is PPP (Point-to-Point-
Protocol).

To receive a MMS, the MMS-Proxy/Relay sends a MMSNotification to the client
encapsulated in a SMS (WAP-PUSH). The MM1Service fetches the MMS using the
WSP/WTP connection (WAP-GET).

To send a MMS, the message is also transported over the WSP/WTP connection
(WAP-POST).

5.4.1. Hardware

To send a MMS, any GPRS modem attached to your PC can be used. Receiving a
MMS will not work with a GPRS mobile phone, since the phone intercepts the
MMS notification (even if it is not able to handle MMS) - the notification is never
passed to jSMS. Therefore you must use a dedicated GSM/GPRS device (e.g. a
Siemens MC-35).

To increase the throughput of MMS messages, you can use two GSM/GPRS
devices. One device is used to receive MMS notifications via WAP-PUSH (WAP
encapsulated in SMS). The second device establishes a permanent PPP connection
to the MMS-Proxy/Relay and is used to send and receive MMS.

jSMS User's Guide 16/42

5.4.2. Common configuration

The MMS settings must be provided by your MMS provider. Usually you can find
the settings required for connecting to the MMS-Proxy/Relay at the website of
your provider. The same settings that are used to configure MMS on your mobile
phone can be used to configure jSMS.

Adjust the following properties in the configuration file bin/jsms.conf:

Property Description
[mms.protocol.mm1.mmsc.url] URL of the MMS-Relay-Server

e.g.: http://mymmsc/mms/

[mms.protocol.mm1.wapgateway] IP address (and port) of the WAP gateway. Format:
 IP-address:port
If the port has not been specified, it defaults to 9201.

[mms.protocol.mm1.report.allowed] Indicates whether or not sending of delivery report is
allowed. Default is true.
Set it to false if you do not want to send a report to the
sender after you fetched the MMS.

[mms.transport.class] Define the Transport layer which should be used for
mms.

GPRS:
com.objectxp.mms.transport.PPPDialup

Direct TCP/IP connection:
com.objectxp.mms.transport.DirectConnection

[mms.transport.ppp.timeout] Number of seconds to wait until the GPRS connection
is established. Defaults to 20 seconds.

[mms.transport.ppp.os] Operating System. If this property is unset, the OS gets
detected automatically.

Set this property to WIN for a system which is using a
RAS dialer.

Set this property to LINUX, UNIX or OSX if your system
uses a BSD PPP daemon.

If you plan to receive MMS, you have to configure the GSM section as well. Please
note that the RAS- and BSD PPP dial-up mechanism does not unblock PIN-code
protected SIM-Cards. To activate a PIN-protected SIM-Card, either open a
GsmSmsService first and close it or add the PIN-Code of your SIM card to the
Modem Initialization scripts (AT+CPIN=”<your PIN>”).

jSMS User's Guide 17/42

5.4.3. Windows installation and configuration

On Windows, jSMS uses RAS (Remote Access Services) to establish a PPP
connection to the MMSC. The following steps must be carried out on your
Windows system:

1. Copy the jdunxp.dll (For Windows >= XP) or jdun2k.dl l (For Windows 2000) or
jdun98.dll (For Windows 98 or ME) to your Library Path, e.g. to
C:\Windows\System32.

2. Edit your Modem Settings:
To establish a GPRS connection, the modem has to be initialized with an
additional AT- command that sets the GPRS access point. Go to: Control
PanelPhone and Modem OptionsModems, select your modem and click on
“Edit PropertiesAdvanced”

Add the AT-command below as extra initialization command:

AT+CGDCONT=1,"IP","<accessPointName>"

(replace <accessPointName> with the access point name of your bearer)

3. Modify the following properties in your jSMS configuration:
Property Description

[mms.transport.ppp.ras.user] The user name your bearer requires.

[mms.transport.ppp.ras.password] The password used to login to your
bearers MMS network.

[mms.transport.ppp.ras.modem] Name of installed GPRS modem. This must
exactly match the name shown in the List
of modems in Control PanelPhone and
Modem Options

[Name of the PPP Interface] Name of the PPP Interface.

To test your RAS configuration, run the class mms.SendExample located in the
examples directory of the jSMS distribution.

jSMS User's Guide 18/42

5.4.4. BSD-PPP daemon configuration

jSMS supports Unix systems having the BSD PPP daemon installed. The API has
been tested on GNU/Linux- and Solaris 10 (x86), but should also work on other
Unixes providing a BSD PPP daemon.

Make sure that the user who is running jSMS is authorized to run the PPP
daemon (pppd). Unless that user is root, this is usually achieved by adding the
user to a certain group (e.g. dialup or uucp) and setting the SUID-bit on the pppd
executable. Consult your System Administrator or the Documentation of your OS
for more information about how to allow non-root users to establish PPP
connections.

To establish a PPP-connection to your MMS-Provider, jSMS invokes the PPP-
Daemon (pppd) with the arguments ”call peer”, where peer corresponds to the
property mms.transport.ppp.bsd.peerfile of your MMSServiceFactory configuration.
Please note that a peers-file must be present for each MMS-Provider.

Installing the peers-file(s)

jSMS comes with templates of a PPP peers-file (the templates are called mms) for
both the GNU/Linux- and Solaris OS. These templates are located within the peers/
directory of the jSMS distribution. For other Unixes, start with one of the
templates and tweak it to match your PPPD syntax.

For each MMSC-Provider, place a copy of the peers-file template into the peers-
directory of your system (usually /etc/ppp/peers/), name it after your MMS-Provider
(e.g. vodafone) and edit the copy using your favorite editor. The template contains
extensive comments about each setting that has to be adjusted. Settings that have
to be changed include the serial-port configuration (name, baud rate, etc.), the
name of your GPRS-Access point, and possibly a username/password combination
(if required by the MMS-Provider).

Adding a route to the MMSC server

Usually, the MMSC cannot be directly reached over the PPP link since the IP
address of the PPP interface is not in the same subnet as the MMSC server. This
means that a temporary route to the MMSC must be added to the routing table on
your system. After the PPP link is terminated, the OS automatically removes this
entry. To automatically add this route whenever the PPP link is established, the
appropriate route command must be added to a script that is invoked by the PPP
daemon after the link has been established. Depending on your OS vendor, the
route command can either be added to the script /etc/ppp/ip-up or put in a separate
script and placed in the directory /etc/ppp/ip-up.d/. The jSMS distribution contains
example ip-up scripts for GNU/Linux and Solaris that can be found in the peers/
directory. Either copy the provided ip-up script to the appropriate location on your
system or integrate the scripts content to your existing ip-up script.

jSMS User's Guide 19/42

Validating the PPP configuration

After you have set up the peers-file(s) and ip-up script, you should validate the PPP
configuration by manually establishing a link to your MMSC-provider(s).

For each provider, invoke the command pppd call <peer> (where <peer> is probably
the name of your MMSC provider) and verify that the connection can be
established. Make sure that you invoke pppd as the same user that will be
running the jSMS-enabled application.

Below is a transcript of successfully establishing a PPP connection on Solaris 10.
After the connection has been established (local- and remote addresses displayed),
hit CTRL-C to disconnect. Please note that the pppd binary is usually placed in /usr/
sbin/ (GNU/Linux) or /usr/bin/ (Solaris).

$ /usr/bin/pppd call mymmsc
Serial connection established.
Using interface sppp0
Connect: sppp0 <--> /dev/term/a
local IP address 10.111.10.131
remote IP address 192.168.254.254
^C
Terminating on signal 2.
Connection terminated.
Connect time 0.4 minutes.
Sent 620 bytes (16 packets), received 459 bytes (13 packets).
Serial link disconnected.
$

If you run into problems bringing up the PPP link, uncomment the debug directive
in the peers-file and possibly also add the option ”-V” to the chat script embedded
in the peer file. This will give you a lot of debugging hints on stderr.

jSMS User's Guide 20/42

5.5. Configuring the MM7 protocol

MM7 is the protocol between the Multimedia Service Center (MMSC) and a Value
Added Service Provider (VASP). It is based on SOAP and uses HTTP(S) as the
transport protocol. It can be used by third-party applications to send and receive
multimedia messages to/from MMS-capable mobile devices.

Please notice that MM7 requires Java 1.4.2 or later. The MM7 implementation
depends on the JavaMail API (V1.4). You will also need the JavaBeans Activation
Framework (JAF - V1.1). The jSMS distribution already contains the JavaMail
(lib/javamail.jar) and JAF (lib/activation.jar) libraries. Those libraries must be added to
your CLASSPATH .

5.5.1. Information required from your MMSC provider

MM7 requires an MM7 account at a MMSC provider. For outgoing multimedia
messages, your MMSC provider must supply you with the following information:

 URL where the MM7 MMSC listens for message submission requests from
your application

 If applicable, a user name and password required for submitting messages
to the URL above

 If the MMSC operator uses SSL, you may require SSL specific information,
e.g.:
○ a X509 CA Certificate used for verifying the SSL server
○ a X509 Client Certificate and private key used for authenticating your

application at the SSL server
 a VASP ID

5.5.2. Information provided to your MMSC provider

For incoming multimedia messages, you must provide the following information
to your MMSC provider:

 URL where your application is listening for incoming multimedia messages
and reports

 If applicable, a user name and password that the operator must use when
submitting requests to the URL above

 If your application uses SSL, you may also provide the operator with SSL
specific information, e.g.:
○ the X509 CA Certificate which signed your SSL server certificate
○ a X509 Client Certificate and private key that the operator must use for

authentication at the URL above

jSMS User's Guide 21/42

5.5.3. Operation Modes

The MM7 protocol implementation provided by jSMS supports two modes of
operation: Standalone and Web-Application. In both modes, jSMS uses
java.net.URL for outgoing connections.

Standalone Operation

When using jSMS in standalone-mode, an embedded web server is used for
reception of MM7 requests from the MMSC operator. jSMS doesn't provide its
own web server implementation but uses Jetty (http://www.mortbay.org) instead.
Jetty is not bundled with jSMS, therefore you must download Jetty 6.x yourself.
Add lib/servlet.jar and the Jetty JAR files (jetty-6.x.x.jar, jetty-util-6.x.x.jar) to your
CLASSPATH .

When configuring the embedded web server, various configuration properties are
used to form the final URL where the MM7 MMSC can submit messages/report to:

(http)://[(user):(pass)@]<hostname>[:(port)][(path)]

(http) mms.protocol.mm7.in.ssl
(user) mms.protocol.mm7.in.username
(pass) mms.protocol.mm7.in.password
(:port) mms.protocol.mm7.listen
(path) mms.protocol.mm7.in.path

Assuming your machine is named myhost.mydomain and you have set ssl to false,
listen to 8080 and path to /in/, the resulting URL would be
http://myhost.mydomain:8080/in/. This is the URL that you would have to provide to
your MM7 MMSC operator. Since no username/password is set, accessing the
URL doesn't require HTTP Basic Authentication. See MM7 Configuration
Properties for a list of supported properties.

Web-Application Mode

If you use jSMS within a Java Web Application, the Web Application Server (e.g.
Tomcat, Jboss) will handle incoming HTTP(s) requests from your MM7 MMSC.

jSMS provides a Servlet for processing incoming requests from the MMSC:
MM7ReceiverServlet. This class is abstract, so the developer must subclass it and
implement at least the getService method, returning a MMSService instance. It is up
to the developer on how to construct this MMSService instance.

jSMS User's Guide 22/42

http://www.mortbay.org/

5.5.4. MM7 Configuration Properties

The following configuration properties apply to MM7:

Property Description

[mms.protocol.name] Protocol handler. For MM7, this must be set
to MM7

[mms.protocol.mm7.vasp.id] MM7 VASP ID

[mms.protocol.mm7.vas.id] Value Added Service ID (VASID). Optional.

[mms.protocol.mm7.out.url] URL where the MM7 MMSC listens for
message submission requests from your
application

[mms.protocol.mm7.out.username] User name required for submitting
messages to the MM7 MMSC. Optional.

[mms.protocol.mm7.out.password] Password required for submitting
messages to the MM7 MMSC. Optional.

Additional Properties for Standalone Mode

[mms.protocol.mm7.listen] Set this property to a port or IP-
address/port combination if you want to
enable the embedded HTTP(S) server for
MMS reception.

When specifying an IP address, the
HTTP(S) server will only listen on the given
address. If only a port is set, the server will
listen on all network interfaces.

Notice: you must add Jetty
(http://jetty.mortbay.org/) to your
CLASSPATH to enable standalone mode.

[mms.protocol.mm7.in.path] This is the path component of the URL for
incoming messages/reports from the MM7
MMSC. If unset, the path defaults to /.
Optional.

[mms.protocol.mm7.in.ssl] Turn on HTTPS (SSL) for the embedded
HTTP(S) server. Optional.

[mms.protocol.mm7.in.ssl.clientauth] Require certificate based client
authentication from the MM7 MMSC. SSL
must be enabled. Optional.

[mms.protocol.mm7.in.username] User name hat the MM7 operator must use
when delivering messages to your
application. Optional.

[mms.protocol.mm7.in.password] Password hat the MM7 operator must use
when delivering messages to your
application. Optional.

jSMS User's Guide 23/42

http://jetty.mortbay.org/

5.5.5. SSL/TLS

jSMS can use the SSL/TLS protocol for securing the communication with the MM7
MMSC. The API relies on the Java Secure Socket Extension (JSSE) which is part of
Java version 1.4.2 and later. JSSE includes support for SSL/TLS and contains a
protocol handler for dealing with HTTPS URLs.

 For sending MM7 messages using HTTPS, jSMS uses the class java.net.URL.

 For receiving MM7 messages and reports in Standalone Mode, jSMS creates
a Server Socket using javax.net.ssl.SSLServerSocketFactory

 When using jSMS with a web application, the Web Application Server is
responsible for handling SSL-Requests. For more information about
configuring SSL for your web application, consult the documentation of your
Web Application Server.

JSSE Configuration

Key material and X509 Certificates that JSSE uses for SSL/TLS are stored in
keystores. Information in a keystore can be grouped into two categories: key
entries and trusted certificate entries. A key entry consists of a X509 certificate
and its private key, and can be used e.g. for running a SSL/TSL server or for
authenticating a client against an HTTPS server. A trusted certificate entry can be
used for verifying the identity of a communication partner. If a keystore only
contains trusted certificate entries, it is called a truststore.

If you require a key-entry (for authenticating against the MM7 HTTPS server or for
receiving messages and reports over HTTPS in standalone mode), you must create
your own keystore.

Java includes a tool called keytool that can be used for creating and managing
keystores. The location of your keystore(s) must be specified using the Java system
properties listed below:

System Property Description

javax.net.ssl.keyStore Location of the keystore

javax.net.ssl.trustStore Location of the truststore. If unset, JSSE will
look for $JAVA_HOME/jre/lib/jssecacerts and
$JAVA_HOME/jre/lib/cacerts

javax.net.ssl.keyStorePassword Keystore password

javax.net.ssl.trustStorePassword Truststore password

System Properties can either be passed to Java using the option -D on the
command line (e.g. java -Djavax.net.ssl.keyStore=$HOME/mykeystore) or can be set at
runtime by calling System.setProperty(...).

For more information about customizing JSSE, see this document:

 http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html

jSMS User's Guide 24/42

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html

6. Messages

6.1. Message and SmsMessage

The base class for all messages (except MMS) in the jSMS API is called Message. A
Message object can be sent as an SMS (by using one of the SmsService
implementations) or as an email (using the SmtpService). If you want to have more
control about the content and attributes of a SMS Message, the class SmsMessage
should be used. SmsMessage extends the base Message class and adds additional
features like specifying the message's character encoding (alphabet), setting the
validity period of the message, requesting a status report, etc.

6.1.1. Sending a SMS Message

After a SmsService object has been created and initialized, you can send Short
Messages using either the basic com.objectxp.msg.Message object or an instance of
com.objectxp.SmsMessage (for fine grained control over the message):

Message msg = new Message();
msg.setRecipient("+41123456789");
msg.setMessage("Hello Mobile World");
service.connect();
service.sendMessage(msg);

jSMS User's Guide 25/42

6.1.2. Receiving a SMS Message

SMS messages can also be received using the SmsService object. To prepare your
application for receiving short messages, the following steps have to be done:

1. Implement the interface MessageEventListener. All registered event listeners will
be notified by the involved SmsService about incoming messages, outgoing
messages, established connections, etc. Consult the jSMS API documentation
for more information about the MessageEventListener interface.

2. Register your MessageEventListener implementation with the SmsService by
invoking its addMessageEventListener method

3. Instruct the SmsService to start receiving messages by calling connect followed by
startReceiving

The following code illustrates the basic steps to implement reception of SMS
messages in a jSMS application.

import java.io.File;
import com.objectxp.msg.*;

public class MyEventListener implements MessageEventListener
{

public void handleMessageEvent(MessageEvent event)
{

if(event.getType() == MessageEvent.MESSAGE_RECEIVED){
System.out.println("Received message is: " + event.getMessage());

}
}

public static void main(String args[])
throws Exception

{
File config = new File(”/path/to/your/jsms.conf”);
SmsService service = new GsmSmsService();
service.init(config);
service.addMessageEventListener(new MyEventListener());
try {

service.connect();
service.startReceiving();
System.out.print("Press any key to stop receiving messages");
System.in.read();
service.stopReceiving();
service.disconnect();

} finally {
service.destroy();

}
}

}

jSMS User's Guide 26/42

6.2. MultipartMessage

Normally the content of one message is limited to 160 characters (or 140 octets in
binary mode). The MultiPartMessage interface gives the user the ability to send
content longer than the above limits. Two implementations of the MultiPartMessage
interface are available: SmartMessage and EMSMessage.

6.2.1. SmartMessage

jSMS includes classes for sending and receiving Nokia Smart Messages. The
following Smart Messages are supported

 Operator logo
 Picture message
 Calling line identification icon (CLI Icon)
 Ring tone
 VCard (Business card)
 VCalendar

6.2.2. EMSMessage

jSMS supports sending and receiving EMS messages. With EMS you can send
more then just simple text messages. The EMS package in jSMS gives you the
ability to send and receive formated text, pictures, animations and sounds. Several
content elements can be inserted in one message. jSMS supports the following
EMS elements:

 Animations
 Text and formated text
 Sounds (predefined and user defined)
 Pictures (predefined and user defined)
 User prompt indicator

An EMSMessage can also be used for sending and receiving user defined content
such as text longer than 160 characters or data longer than 140 octets.

6.2.3. Sending a multipart message

Sending a EMS or Smart message is as easy as sending a text message. You do not
have to care about the message length and how to split it. Just create the message
and send it.

EMSMessage msg = new EMSMessage();
// add content
msg.add(new EMSText("Hello", EMSTextFormat.BOLD));
msg.add(EMSAnimation.WOW);
msg.add(new EMSText("World", EMSTextFormat.LARGE));
// set recipient
msg.setRecipient("+41791234567");
// send it
service.sendMessage(msg);

jSMS User's Guide 27/42

file:///

6.2.4. Receiving a multipart message

Depending on the content length of a SmartMessage or EMSMessage, jSMS splits
such messages in multiple fragments before sending them over the wire. jSMS
also provides a class that will automatically reassemble such fragments into a
single message on reception. To use this feature, add an instance of
MultiPartReceiver to your service as a MessageEventListener. Your own
MessageEventListener implementation can then be added to this MultiPartReceiver. All
events, except for MessageEvent.MESSAGE_RECEIVED , will be dispatched directly to
the registered listeners of the MultiPartReceiver. In case of a MESSAGE_RECEIVED
event, the MultiPartReceiver checks if the message received is a multipart message
or a single-part message. Single-part messages will be dispatched directly to
underlying listeners without further processing. If the received message is part of
a concatenated SMS, the message is placed into an internal memory cache. After
all parts of a message have arrived, those parts are reassembled into one single
MultiPartMessage (EMS - or SmartMessage).

// Create the SmsService (Replace GsmSmsService with the SmsService
// Implementation of your choice).
SmsService service = new GsmSmsService();

// new event listener
MessageEventListener listener = new MyMessageEventListener();

// Construct a multi-part receiver
MultiPartReceiver receiver = new MultiPartReceiver(TIMEOUT, MAX_ENTRIES, listener);

try {
// get the service ready to listen for incoming messages
service.init(config);
// add the multipart receiver as listener
service.addMessageEventListener(receiver);
service.connect();
service.startReceiving();

// manualy interupt the receiver
System.out.print("Press any key to stop receiving messages");
System.in.read();

// stop listening for incoming sms's
service.stopReceiving();
service.disconnect();

} finally {
service.destroy();
receiver.destroy();

}

jSMS User's Guide 28/42

6.3. OTA Messages

The Messages in the OTA package (Over The Air) provide the means for handling
WAP-Push messages. The SMS payload (user data) for OTA messages holds a
binary encoded XML document (WBXML) with a specific MIME type depending on
the type of OTA message.

6.3.1. BrowserSetting

To be able to access services such as WAP, GPRS, MMS or email, a mobile phone
must be configured accordingly. Instead of manually entering those settings on the
mobile phone, the configuration can also be “pushed” to the mobile phone using
the appropriate OTA “Browser Setting” message. Depending on the subsystem to
configure, one of the following classes can be used:

 GPRSBrowserSetting
 GsmCsdBrowerSetting
 GsmSmsBrowerSetting
 GsmUssdBrowerSetting
 Is126CsdBrowerSetting
 CSDBrowserSettings

6.3.2. Bookmark

This class may be used to send OTA Browser bookmarks using WAP PUSH over
SMS. Browser bookmarks are used to provide handsets with bookmarks of any
kind that can be used for browsing. A Bookmark consists of a Name and a URL.

6.3.3. Service Indication / Service Loading

The ServiceIndication class represents a OTA Service Indication (SI). The SI provides
a way to inform a user that an event has occurred and indicate a URL that can be
loaded in order to react to that event. This is done by sending a SMS to the client
that informs the recipient about the event, and a URL from where the appropriate
service can be loaded. For example, the message could state that "A new mail has
arrived", including the URL of the Web-Email interface.

The ServiceLoading class represents the OTA Service Loading content type (SL). A
SL message causes a WAP browser on a mobile phone to load and execute a URL.
If appropriate, the mobile phone loads this URL without any user intervention.

jSMS User's Guide 29/42

6.3.4. Sending an OTA Message

Note: To use the OTA package, a SAX parser implementing the Java API for XML
Processing (JAXP) must be accessible:

➢ Starting with Java Version 1.4, an implementation of the JAXP-API is already
included in the JRE.

➢ For previous Java versions, you must add a SAX parser and the JAXP API
classes to your CLASSPATH . We recommend using the Apache Xerces XML
Parser which is freely available at http://xml.apache.org/. Add both
xercesImpl.jar and xml-apis.jar to your application CLASSPATH .

// Create and initialize the SmsService (Replace GsmSmsService with
// the SmsService Implementation of your choice).
SmsService service = new GsmSmsService();
service.init(config);

// Create Bookmark
Bookmark msg = new Bookmark("objectXP", "www.objectxp.com");
msg.setRecipient(receiver);
msg.setSender(sender);

// connect, send message and disconnect
try {

service.connect();
service.sendMessage(msg);
service.disconnect();

} finally {
service.destroy();

}

6.3.5. Receiving OTA Messages

Although OTA messages can be received with jSMS, they will not be automatically
converted to the appropriate OTA object. This means that incoming OTA messages
will be delivered as regular SmsMessage objects. Parsing of those messages is
therefore left to the application.

jSMS User's Guide 30/42

http://xml.apache.org/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxp/

6.4. Multimedia Messages

6.4.1. MMSNotification

The MMSNotification extends the SmsMessage class. It also implements the
MultiPartMessage interface. A MMSNotification is sent from the MM1 MMSC to the
recipient of a Multimedia Message to notify the recipient that a MMS is ready to
be retrieved. The Notification is encapsulated in a SMS message (WAP PUSH).
After reception of a MMSNotification, the application must establish a connection to
the MMSC using the appropriate MMSService object and retrieve the MMS using
the fetch method offered by MMSService.

6.4.2. MMSMessage

A MMSMessage is a container holding one or multiple multimedia parts, such as
text, image, sound and video. It doesn't contain a definition on how the target
device should display the media parts. A possible application for this class is to
send a Ring tone to a MMS-capable mobile phone.

6.4.3. SMILMessage

The class SMILMessage is also a container holding multimedia parts but
additionally contains a SMIL (Synchronized Multimedia Integration Language)
document that describes how the multimedia-parts should be displayed on the
target device. The SMIL document contains references to the media parts and
defines the chronological and graphical order of those parts.

6.4.4. Sending a SMIL Message

Sending a SMIL Message is nearly as simple as sending a common SMS. Instead
of adding some text as Message content, the location of a SMIL document is
specified.

// Create a MMS Service factory
File config = new File("/path/to/jsms.conf");
MMSServiceFactory factory = MMSServiceFactory.createFactory(config);
MMSService mmsService = factory.getDefaultService();

// load a SMIL document from the given URL
URL url = new URL("file:///path/to/your/smil.xml");
MMSMessage msg = new SMILMessage(url);

msg.addTO(new MMSAddress(MMSAddress.TYPE_PLMN, "555123456"));

// send the MMS
try {

mmsService.connect();
mmsService.send(msg);
System.out.println("Message sent succesfully.");

}catch (Exception e){
System.err.println("could not send Message:"+ e);
e.printStackTrace();

} finally{
mmsService.disconnect();

}

jSMS User's Guide 31/42

6.4.5. Receiving a multimedia message over MM1

When a MM1 MMSC has to deliver a MMS, it first sends a notification to the
recipient to indicate that a Multimedia Message is ready to be retrieved. This
notification is sent using WAP-PUSH (SMS). At a later stage, the MMS can be
retrieved by passing the MMSNotification to the fetch method of the MMSService.

To receive MMS notifications, a SmsService must be used. Since MMS notifications
might not fit into a single SMS, the MultiPartReceiver class must be used for
reception. See 6.2.4 - Receiving a multipart message on how to receive multipart
messages. The example below only shows how to fetch a MMS message after
having received a MMS notification.

public void handleMessageEvent(MessageEvent event)
{

if(event.getType() != MessageEvent.MESSAGE_RECEIVED) {
// We are only interested in incoming messages
return;

}

Message msg = event.getMessage();

if (msg != null && (msg instanceof MMSNotification)) {
MMSNotification notification = (MMSNotification)msg;
// Disconnect the SMS Service
if (service != null){

try {
service.stopReceiving();
service.disconnect();

} catch (MessageException e) {
System.err.println("disconnection SmsService failed.");
e.printStackTrace();

} finally {
service.destroy();

}
}

MMSService mmsService=null;
try {

// Get the default MMS Service (The MMSServiceFactory has been created
// at an earlier stage)
mmsService = factory.getDefaultService();
// Connect to the MMSC
mmsService.connect();
// Fetch the MMS
MMSMessage mms = mmsService.fetch(notification);
// Show incoming message
System.out.println("MMS Fetched:\n"+mms.toString());

} catch (Exception e) {
e.printStackTrace();

} finally {
// Disconnect from MMSC
if (mmsService!=null) {
try {

mmsService.disconnect();
} catch (Exception e) {

System.err.println("Could not disconnect mmsService”);
e.printStackTrace();

}
}

}

// restart the GSM Service and listen for more incoming messages
try {

startGsmService();
} catch (Exception e) {

e.printStackTrace();
}

}

jSMS User's Guide 32/42

6.4.6. Receiving a multimedia message over MM7

Incoming messages and reports are delivered to your application through the
MMSListener interface. Your application must implement this interface and register
the implementation with the MMSService (by calling the setListener method)

Reception in Standalone Mode

If you use jSMS in Standalone Mode, you must configure the port (and possibly
network interface) where jSMS listens for incoming messages and reports from
the MM7 MMSC.

As soon as you call connect on the MMSService, jSMS will start to listen for
incoming HTTP(S) requests. Incoming requests are transformed into the
corresponding Java object (e.g. MMSMessage, MMSReadReport) and then passed to
the MMSListener registered with the MMSService. If no listener is registered, jSMS
refuses the request from the MM7 SMSC by answering with HTTP status code 500.

Reception with a web application

When using jSMS in a web application, the Web Application Server will listen for
incoming HTTP(S) requests from your MM7 provider and will forward such
requests to your application. In order to receive MMS messages and reports, your
application must extend the abstract class MM7ReceiverServlet and provide at least
the method getService - returning an instance of a MMSService. The Web Application
Server must then be instructed to forward all requests to a certain Path (e.g.
/VASP/*) to this servlet. The MM7ReceiverServlet provides a default implementation
of the doPost method, parsing the incoming MM7 request and dispatching
incoming messages and reports to a MMSListener. The MMSListener must be
registered with the MMSService returned by getService. If the request to process is
not a MM7 request, the MM7ReceiverServlet will throw a ServletException. To prevent
this, MM7ReceiverServlet provides the method isMM7Request that can be used to
determine if an incoming request is from a MM7 MMSC. To use this method, you
may override the doPost method, call isMM7Request and only pass processing to
MM7ReceiverServlet in case of a MM7 request:

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.objectxp.mms.MMSService;
import com.objectxp.mms.protocol.MM7ReceiverServlet;

public class MyMM7Servlet extends MM7ReceiverServlet {
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

if(!isMM7Request(request)) {
// Handle non-MM7 requests here:

} else {
// Pass the request to jSMS:
super.doPost(request,response);

}
}

public MMSService getService() {
...
return service;

}

jSMS User's Guide 33/42

}

jSMS User's Guide 34/42

7. Sample jSMS Applications

The directory examples within the jSMS distribution contains various examples
showing the different aspects of using the jSMS API.

7.1. Send SMS messages using a GSM Device

The GSM Device (e.g. your Mobile Phone) is connected directly to a serial port
on the host computer. The jSMS API will communicate with the device using a
javax.comm compliant library.

The following example shows how to apply jSMS for this application:

package example1;

import java.io.File;
import com.objectxp.msg.*;

public class JSMSExample1
{

public static void main(String[] args)
{

SmsService service = null;
try {

// Configuration
File config = new File(”/path/to/your/jsms.conf”);

// create service object.
service = new GsmSmsService();
service.init(config);
// create a new Message.
Message msg = new Message();
msg.setRecipient(“+411234567”);
msg.setMessage("jSMS is cool!");
// Connect to the device
service.connect();

// send the Message
service.sendMessage(msg);
System.out.println("Message sent successfully, ID is "+msg.getMessageId());

} catch (Exception ex) {
System.err.println("Message could not be sent: "+ex.getMessage());
ex.printStackTrace();

} finally {
if (service != null) {

try {
service.disconnect();

} catch(Exception unknown) {}
service.destroy();

}
}

}
}

jSMS User's Guide 35/42

7.2. Receive SMS messages using a GSM device via
IrDA

In this configuration, a IrCOMM capable GSM mobile phone will be used for
sending and receiving Short Messages (SMS). As in the previous example, the
jSMS API communicates with the GSM device using a javax.comm compliant
library. Notice: the host OS must provide IrCOMM capabilities. The following
example shows how to apply jSMS for this application:

package example2;

import java.io.File;
import com.objectxp.msg.*;

public class JSMSExample2 implements MessageEventListener
{

// Event Handler
public void handleMessageEvent(MessageEvent event) {

if(event.getType() == MessageEvent.MESSAGE_RECEIVED) {
Message msg = event.getMessage();
if (msg != null)

System.out.println("SMS received: " + msg.getMessage());
}

}

// main
public static void main(String[] args)
{

SmsService service = null;
try {

// set the jSMS properites.
File config = new File(”/path/to/your/jsms.conf”);

// create service object.
service = new GsmSmsService();
service.init(config);

// add listener to receive message.
service.addMessageEventListener(new JSMSExample2());

// Connect to the device and start Receiving messages
service.connect();
service.startReceiving();

System.out.println("waiting for messages...");
while(true) {

try { Thread.currentThread().sleep(1000); } catch (Exception e) {}
}

} catch (Exception e) {
System.err.println("Could not receive messages: "+e.getMessage());
e.printStackTrace();

} finally {
if (service != null) {

try {
service.disconnect();

} catch(Exception unknown) {}
service.destroy();

}
}

}
}

jSMS User's Guide 36/42

7.3. Send SMS messages through a Terminal
Server

If the GSM device (for example a Siemens TC35) can not be connected directly to
the host computer due to the lack of a radio signal, jSMS can communicate with
the device by connecting to a terminal server reachable through TCP/IP. The
terminal server forwards data from/to the host computer to the GSM device
attached to (one of) the serial ports of the terminal server.
Since jSMS is designed with a unified interface covering all underlying transport
facilities, you may use exactly the same java code as shown in example 5.1 above.

The only change needed, is to adapt your jSMS configuration properties to the
above configuration. In your jSMS configuration file, change the property
sms.gsm.connector from SERIAL to TCP and specify the host name and port of the
Terminal Server:

sms.gsm.connector=TCP
connector.tcp.host=hostname/IP-address of your terminal server
connector.tcp.port=port-number

jSMS User's Guide 37/42

7.4. Send Short Messages (SMS) using UCP

Most mobile network operators run a UCP (Universal Computer Protocol) gateway.
This gateway usually can be reached over a modem / ISDN connection or using
TCP/IP . In order to use UCP, you have to know the phone number and connection
settings (parity, baud rate, etc.) of the UCP gateway (for Modem Connections).
Using UCP over TCP/IP requires a contract (“large account”) with your mobile
network provider. For more information about accessing a UCP gateway, contact
your local network operator. For the below example to work, configure jSMS by
placing the appropriate properties in your jSMS configuration file:

ucp.connector=SERIAL
ucp.smsc.number=phone number of the UCP Gateway
ucp.port.name=COM1
ucp.port.bps=9600

package example4;

import java.io.File;
import com.objectxp.msg.*;

public class JSMSExample4
{

public static void main(String[] args)
{

SmsService service = null;
try {

// Configuration file
File config = new File(”/path/to/your/sms.conf”);

// create and initialize UCP service
service = new UcpSmsService();
service.init(config);

// create message object
Message msg = new Message();
msg.setSender("<sender address>");
msg.setRecipient("<recipient phone number>");
msg.setMessage("jSMS over UCP is cool!");

// connect to SMSC and send the message
service.connect();
service.sendMessage(msg);
System.out.println("Message sent successfully, ID is "+msg.getMessageId());

} catch (Exception e) {
System.err.println("Message could not be sent: "+e.getMessage());
e.printStackTrace();

} finally {
if (service != null) {

try {
service.disconnect();

} catch(Exception unknown) {}
service.destroy();

}
}

}

jSMS User's Guide 38/42

}

7.5. Send Internet mail messages using the
SmtpService

The jSMS API contains a small footprint SMTP client capable of sending Internet
mail messages (RFC822). The jSMS API has been designed in a way that the same
message can either be sent through SMS or SMTP. The SmtpService uses a mail
server reachable by TCP/IP to deliver Internet mail messages.

7.5.1. The SmtpService Class

This class may be used to send Internet mail messages (RFC822) using a SMTP
mail server.

For the below example to work, configure jSMS by placing the appropriate
properties in your jSMS configuration file:

smtp.host=your.smtp.host
smtp.sender=yourname@yourDomain.com

import com.objectxp.msg.*;
import java.io.*;
import java.util.*;

public class SendMail
{

public static void main(String args[]) throws Exception
{

File file = new File(”/path/to/your/sms.conf”);
SmtpService service = new SmtpService(file);

SmtpMessage msg = new SmtpMessage();
msg.addRecipient("user1@domain1.com");
msg.addRecipient("user2@domain2.com", Recipient.RT_CC);
msg.addRecipient("mySelf@myDomain.com",Recipient.RT_BCC);
msg.setSubject("Business lunch");
msg.setMessage("Business lunch today at the Restaurant 'Chez Max'");

try {
service.sendMessage(msg);
System.out.println("Message sent successfully, ID is "+
msg.getMessageId());

} catch(MessageException me) {
System.err.println("Message could not be sent: "+me.getMessage());

}
}

}

jSMS User's Guide 39/42

8. Debugging your Application

jSMS uses a logging API based on Log4j (http://jakarta.apache.org/log4j/) to log its
execution. Logging can be enabled by adding Log4j to the CLASSPATH and
specifying the name of the log file using the Java System Property jsms.logfile.

If you experience problems while accessing your GSM device or SMSC, rerun your
application with jSMS logging enabled.

Follow these steps to produce a jSMS log file:

1. Download Log4j at http://jakarta.apache.org/log4j/
2. Add log4j.jar to your class path
3. Specify the name of the jSMS log file using the System property “jsms.logfile”

Example:

c:\> java -cp lib\jSMS.jar;lib\log4j.jar;. -Djsms.logfile=jsms.log MyApplication

If you already use Log4j for your application, there is no need for setting the
jsms.logfile system property: Just modify your existing Log4j configuration to
include the category com.objectxp.msg.

jSMS User's Guide 40/42

file:///c:/
http://jakarta.apache.org/log4j/

9. Frequently Asked Questions (FAQ)

Q: I've just downloaded jSMS. What other hardware/software do I need to send/receive
SMS?

A: You need a Java JDK/JRE (at least Version 1.2x) and either a GSM device or a
Modem/ISDN-Adapter.

Q: Your documentation mentions a "Siemens TC35". Does this mean that I need a TC35
to use your software?

A: No, jSMS should work with any GSM device with a built-in modem that is capable of
sending/receiving Short Messages (SMS) and can be accessed using a serial port.

Q: I try to use jSMS with my Falcom/Wavecom GSM device. After calling init on the
GsmSmsService, I get an exception saying there is no response from the device. What
can I do against it?

A: Try to increase the initialization timeout in your jSMS properties to a higher value
(e.g. sms.gsm.inittime=30)

Q: Does jSMS support J2ME (Mobile Edition)

A: No, jSMS requires a lot of classes which J2ME does not (yet) provide.

Q: Will jSMS work with my Nokia 5510 mobile phone?

A: Yes, but since older Nokia phones (like the 5510) don't have a built-in modem, you
have to use Nokia's DataSuite which provides a “virtual” com port.

Q: I get an error when running jSMS saying that my serial port 'COM1' doesn't exist.
What is wrong?

A: Make sure that you have correctly installed javax.comm . Follow the instructions for
installing javax.comm given in the document “install_commapi.html”

Q: Does jSMS support the EMI UCP protocol?

A: Yes, jSMS complies to version 4.0 of the EMI UCP Specification. Supported operations
are: 60 - Open Session (Subtype 1), 01,30,52 - Sending Messages 01,52 - Receiving
messages, 53 - Receiving status reports. Notice: You need a special license key to
enable this functionality. Contact us if you'd like to evaluate UCP support.

Q: Does your Java API use JNI to interface to a C library, or is the whole protocol stack
written in Java?

A: The common SMS functionality of jSMS doesn't contain any native code. But to use
the Multimedia functionality on a Windows OS, jSMS relies on a native C library.

Q: I have already purchased a developer license, how can I purchase a runtime license?

A: Runtime licenses can be ordered at our jSMS support page:
https://www.objectxp.com/merchant/support.do
To access this page, you have to enter the login and password you received when
purchasing the development license.

jSMS User's Guide 41/42

Q: When sending messages using a GSM phone, does jSMS make use of PDU mode? Is
there support for Text mode?

A: jSMS uses PDU mode for sending messages. We have dropped text mode a long time
ago, since not all GSM devices support it and you can't set some message properties
in text mode.

Q: May I send Multimedia Messages with my Nokia 6310?

A: Yes, sending a Multimedia Message is possible with any GPRS device, even if the
Mobile device is not able to handle Multimedia Messages.

Q: May I receive Multimedia Messages with my Nokia 6310?

A: No, since the Mobile Device catches the MMSNotification even if it can not handle it.
Therefore jSMS doesn't receive notifications about incoming Multimedia Messages.
Use a dedicated GPRS device instead (e.g. a Siemens MC35).

jSMS User's Guide 42/42

	1. About this Document
	1.1. Scope
	1.2. Audience

	2. The jSMS Model
	2.1. The jSMS Software Layers
	2.2. jSMS API versus Java Mail API

	3. Getting started
	3.1. License jSMS
	3.2. Install jSMS
	Windows-Version
	Unix-Version

	3.3. Testing the Connection to your GSM device

	4. jSMS Services
	4.1. Supported Message Types
	4.2. The SmsService Interface
	4.3. Windowing for Applications
	4.4. SmsService Implementations
	4.4.1. GsmSmsService
	4.4.2. TapSmsService
	4.4.3. UcpSmsService
	4.4.4. Cimd2SmsService
	4.4.5. SmppSmsService

	4.5. Creating a SMS Service Object
	4.6. Initializing the Service Object
	4.6.1. Example for Instantiating a GsmSmsService Object

	5. Multimedia Message Service (MMS)
	5.1. MMSService
	5.2. MMSServiceFactory
	5.3. MMSListener
	5.4. Configuring the MM1Service
	5.4.1. Hardware
	5.4.2. Common configuration
	5.4.3. Windows installation and configuration
	5.4.4. BSD-PPP daemon configuration
	Installing the peers-file(s)
	Adding a route to the MMSC server
	Validating the PPP configuration

	5.5. Configuring the MM7 protocol
	5.5.1. Information required from your MMSC provider
	5.5.2. Information provided to your MMSC provider
	5.5.3. Operation Modes
	Standalone Operation
	Web-Application Mode

	5.5.4. MM7 Configuration Properties
	5.5.5. SSL/TLS
	JSSE Configuration

	6. Messages
	6.1. Message and SmsMessage
	6.1.1. Sending a SMS Message
	6.1.2. Receiving a SMS Message

	6.2. MultipartMessage
	6.2.1. SmartMessage
	6.2.2. EMSMessage
	6.2.3. Sending a multipart message
	6.2.4. Receiving a multipart message

	6.3. OTA Messages
	6.3.1. BrowserSetting
	6.3.2. Bookmark
	6.3.3. Service Indication / Service Loading
	6.3.4. Sending an OTA Message
	6.3.5. Receiving OTA Messages

	6.4. Multimedia Messages
	6.4.1. MMSNotification
	6.4.2. MMSMessage
	6.4.3. SMILMessage
	6.4.4. Sending a SMIL Message
	6.4.5. Receiving a multimedia message over MM1
	6.4.6. Receiving a multimedia message over MM7
	Reception in Standalone Mode
	Reception with a web application

	7. Sample jSMS Applications
	7.1. Send SMS messages using a GSM Device
	7.2. Receive SMS messages using a GSM device via IrDA
	7.3. Send SMS messages through a Terminal Server
	7.4. Send Short Messages (SMS) using UCP
	7.5. Send Internet mail messages using the SmtpService
	7.5.1. The SmtpService Class

	8. Debugging your Application
	9. Frequently Asked Questions (FAQ)

